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Resonant activation phenomenon for non-Markovian potential-fluctuation processes
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We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching
generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results
by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian
processes having the first moment of the waiting time distributions, we get qualitatively the same results as in
the Markovian case. However, for distributions without the first moment, the mean first passage time curves do
not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the
resonant activation fails for fluctuating processes widely deviating from Markovian.
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The resonant activation phenomenon first reported by Dowith «, 8= =. The subscripts specify the finat) and initial
ering and Gadoupl] has attracted much attention. After the (B) state of the fluctuating potential while the arguments
famous seminal paper various models exhibiting this phegive the final &) and initial (y) position of the diffusing
nomenon were considered and the conditions under whicparticle. Because of the absorbing boundary=ab the total
the phenomenon is present were intensively stuf2édWe  probability in the safe domain is not conserved. Instead, it
consider a simple generalization of the original model bygradually leaks out into the boundary. It is helpful to con-
Doering and Gadoua to non-Markovian switching potentialssider auxiliary quantities called boundary channels which de-
generated by arbitrary renewal processes. That is, we studycribe the process of leaking of the probability out of the safe
the solutions of the following stochastic differential equationdomain into the absorbing boundary. We may even distin-

q guish two boundary channels according to the state of the
-~ fluctuating potential at the moment of the absorption event.
ﬁx(t)‘ FQI+&(V), @ In order to describe the dynamics of the channel filling pro-
cesses, we introduce the boundary channel occupation
where £(t) is a Gaussian white noise process with Green’s functions. These quantities are given by
(E()E(t'))=268(t—t") and Q(t) is a symmetric dichoto-
mous noise jumping betweerrl according to a renewal ,,(y;t)=ProX(t)eB,|X(0)=y and Q(0)=p8}, (3
process generated by arbitrary waiting time deng(ty with
the distribution functior(t) = f,d7f (7). We study both the where theB. denote the corresponding boundary channels.
stationary as well as nonstationary renewal processes. TRgain, the second subscrifi) relates to the initial state of
make the process stationary we have to replace the first waithe potential while the firsta) specifies the boundary chan-
ing time density byh(t)=(1/m;)[1—F(t)] [the distribution  nel in question. It is convenient to write these Green’s func-
function H(t)], with m;= [;dttf(t). In nonstationary cases tions in the form of 2-by-2 matrices denoted by the boldface
we takeh(t)=f(t). The diffusion described by the random lettersG(x,y;t),I1(y;t) in the next.
processX(t) takes place on a linear segmett (0,1) with Assume for a moment that the potential is static, i.e., it is
the reflecting wall ak=1 and absorbing wall at=0. fixed in one of its two states. Then the above matrices which

First, we present the theory of the calculation of thewill play a role of unperturbed quantities are diagonal with
switching-averaged Green’s functions. More precisely, thahe form G©(x,y;t)=diag GO(x,y:t),GOxy:t)], TIO(y;:t)
motion within the safe domaire (0,1) will be described by  =diag #O(y;t),7%(y;t)]. The Green's function&‘?(x,y;t)
the state-of-potential resolved conditional densitiesare given simply by the Fokker-Planck equations for the
G.p(x,y;t), defined as fixed potentials supplemented by the boundary conditions.
The boundary channel occupation probabilite8)(y;t) are

Gap(x.y;t)dx=ProfX(t) e (x,x+dx) given by the global probability conservation condition

and Q(t)=«a[X(0)=y and Q(0)= 4}, )

1
w(f)(y;t)=1—f dxG2(x,y;1), 4
0
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This formula expresses the local conservation law of prob-
ability for the composite diffusion and potential-fluctuation
x=0 process.
The convolution structure of Green’s functi¢®) enables
to rewrite the above complicated time integrals structures via
(5) the Laplace transform into a simple geometrical series which
may be formally summed up to the infinite order giving

The last but one expression gives a clear physical insight a5 (2 =[(1—H)G© +T(1-F)GO® .S.[hG©
the operator—d/dx=F is the probability current operator (2=I( ) 12+ ) 1@-S1 12

ot

d d
Ty = —( - &—XtF>G<ﬁ”<x,y;t>

d
_ 7~y
axGi (X,y;1)

x=0

for the corresponding slope of the potential. Namely, the rate +[(1-F)G9](2)-S-[fG?](2)- S [hG?](2)

of the channel filling process equals the probability current

into the absorbing boundary. L (8a)
After these preparatory steps, let us focus on the construc- ) ©

tion of the full Green’s functions for fluctuating potentials. =[(1-H)G™](2) +[(1-F)G1(2)

Basically, our procedure consists of three steps. First, we (1= S[fG@(2)) 1S [hG?](2),

shall assume an arbitrary fixed sequence of the potential-

switching events and we shall follow the particle diffusion in 19

the corresponding time dependent potential. Secondly, we I(y;2)== —G(X,y;2) . (8b)
attribute to any such evolution the probability weight of its zZ Jx x=0

realization. It is during this step that the properties of the

underlying potential-switching process enter the calculationStructures such d§G(®](z) = [gdte”2'f () G(*)(t) mean a
Finally, we shall perform the averaging over the complete set-aplace transform of the product. Equatig8gare our main

of mutually exclusive evolutions. The averaged evolution isresult for Green’s functions of the composite process. Solv-
simply given by the sum over all possible evolutionsing them we get the complete information about the absorp-
weighted by the corresponding probabilities. This is a brieftion process, i.e., the full description of the time evolution of
outline of the method otonstruction of trajectoriesntro- the probability captured in the individual boundary channels.

duced by Chvosta and Reineker in RES], where also the In the following, we restrict ourselves mostly to a reduced
full formalism can be found. The result of the procedure ininformation concerning the boundary channel occupations.
our case is Namely, we will consider the asymptotic boundary channel
occupation quantities defined as
t
G(t)=[1-H()]GV(t)+ f dt;[1-F(t—ty)] Pog(y)=limm,z(y;t)=limzm,4(y;2), (ABCO),
0 t—oo z—0

9

and also the first moments of the boundary channels occupa-
tion densities reading

t t
><G<°)(t—t1).s-h(tl)G<°>(t1)+f dtlf lolt2
0 0

X[1-F(t—1t1)]GO(t—t;)-S-f(t;—t,)

GO (t,—t,) - S h(ty) GO(ty) +- -, ©  rly)= J mdttdwagiy;t) — lim P“ﬁ(y)_iw‘”ﬁ(y;z)_
0

where the center dot denotes the matrix operator multiplica- (10

tion, i.e., the matrix multiplication and the integration over_l_h i imoly related 1o th first
the internal spatial variables, and where the ma&ﬁx(% 'nese quantities are simply refated fo the mean 1irst passage
times 7..(y) for respective initial conditionQ(0)= = by

represents the switching event. The full evolution is repre-

sented as a sum of processes with zero, one, two, etc., po-
. . . ! ! ! ! + = + +T7_4 y .

tential switching events. To(Y)=7i(Y)+ 7 2(y), (MFPT) (11

In the case of evaluation of the boundary channel occu- pqr the Markovian case, the waiting time distribution
pations, i.e., the boundary channel part of the Green’s funcfunctions aref(t)=h(t) = e ", 1-F(t)=1—H(t)=e
tion II(y;t), the above procedure of the construction of tra—:f(t)/ﬂl For any functionG(t) the following identity
jectories yields the proper whole set of mutually exclusiveho|ds. [fG](2)=fZdte 2 (1) G(t) = uG(z+ ). We use

paths for the evolution ofd/dt)I1(y;t), not for I1(y;t) as these properties in Eq8) to obtain
one may see by a closer inspection. Repeating the averaging

procedurg(6) for (d/0t)11(y;t) and bearing in mind Eq5) GO (z+ )L _ -1
. L . T y22 )72

we derive this simple relation between the boundary channel G(z)= 0 .

occupation and the safe domain parts of Green’s functions M Gl(z+pw)

z—0

(12

P P Thus, for Green’s function in the safe dom&i(z), we sim-
—1II(y;t) =— G(x,y;t) . (7)  ply get the matrix Fokker-Planck equation valid for the Mar-
Jt X x=0 kovian switching procesfsee Eq.(4) in Ref.[1]].
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FIG. 1. ABCO and MFPT for waiting times distributions with fast decaytferc, namely,I", (Markovian casg(solid line), I'; (long
dashed ling I'5 (short dashed line deterministic switchindgdotted ling, and twos-functions distribution(dot-dashed line The 7.. denote
the mean first passage times for the respective slopes of the potential. The limiting values of MFPT in the stétieliaviérage of both
7s) and in the infinitely fast switching limimotion in the average potentjare also shown by the bars.

We may proceed further to analytically evaluate Next, we present the numerical results for several non-
m.5(Y;2) using Eq.(8b) from the knowledge of the Markov- Markovian switching processes generated by various renewal
ian Green's function. With the help of identities being processes governed by waiting time probability densities
satisfied by G(z) we come to the final analytic result f(t) normalizedexcept for one which cannot be normalized
for the time evolution of the boundary occupatibi(y;z) so that the mean switching time equalgli.e., [5dttf(t)
reading =1/u. We evaluated the ABCO of the “minus” channel

P_(1)=[P_,(1)+P__(1)]/2 and the MFPT 7(1)
=[7.(1)+7_(1)]12=U2 , g—+7,5(1) for the symmetric
initial condition ProQ(0)==*=}=3 and y=1 considered
(13)  also in the Markovian case. To calculate these quantities we
used a numerical solution of E¢8) employing the eigen-
This expression uses the Markovian Green’'s functiormodes expansion of the unperturbed Green'’s functions. It is
Gr(x,y;2) for the diffusion in(—o, 1) with the reflecting of interest to mention that for some specific waiting time
wall atx=1 only. distributions likeI",, distributions used below, it would be

Instead of quoting the full rather involved result for possible to write down and solve in an analytic form the
I1(y;z), we only present the physically transparent expresequations for Green’s functions analogous to 8¢).
sion for ABCO with the Doering-Gadoua initial condition In the first set of pictures, Fig. 1, we plot the results for
y=1 the ABCO and MFPT for the stationary processes generated

by waiting time distributions decaying fast for-o. The
waiting time distributions used here cover the distribu-
p coshk+aBu tions fr. (t)=u[(n+1)"D/nt](ut)"e” "+ DEt with n=0
(Markov cas¢, 1 and 5, the delta-function distribution
(14) _f(;(t)z S6(t—1/u) corresponding to the_ dete_rmilnist.ic switch-
ing process, and a two-delta-function distributidp(t)
=15(t—1/2u) + 3 8(t—3/2u). One can see that the qualita-
with k=\2u+F?. One can easily see that the probability tive features of the Markovian case are preserved even for
conservation conditions for asymptotic timés, ;+P_;  the considered non-Markovian switching potentials. Namely,
=1 are satisfied. We also verified that our expresgis) both the wide resonant activation maximum in the ABCO
leads to the famous result for of Doering and Gadoua curve as well as the resonant activation minimum in the
(10a—c). Moreover, we give here the analytic expression forMFPT curve are present in all cases with the shape changes
ABCO for the “minus” channel P_(1)=[P_ (1) attributable to the various variances of the used probability
+P__(1)]/2, a quantity analogous to that depicted in Fig. 4densities(comparel’;, two-delta functions, and's cases
of Ref.[1] as a result of the Monte Carlo simulati@ior that ~ We also performed the numerical simulations which fully
calculation, DG used the potential switching betwden  confirmed our results.

(y;z)= %G,;l(o,o;z) -Ggr(0y;z), forye(0,1).

P.s(1)=[2u coshk+F?] "1

2

a+p 2

2

sinhk
+a,uF<l— K )

=8 andF_=0) Further, we performed the calculations for the waiting
time distributions decaying slowly similar to power laws for
2k coshk+2uF sinhk—2uFk+kF? larget, i.e., f (t)<t™ ¢ for larget with a=2,%,%. The exact
P_(1)= 2k(2u coshk+ F2) : expressions for these densities are f ,(t)

(15  =[u/\2Zm(u)?Je % for  a=33 and foy1)
=(3vV3/\2mubt")e %2, These densities do not have
The curves ofP_(1),7(1) as functions ofu for F=8 are higher order moments fde=a— 1. The distributions chosen
plotted in Fig. 1 for reference to be compared with otherabove do not have moments starting from the first, the sec-
results generated by non-Markovian switching. ond, and the third, respectively. The results for these distri
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FIG. 2. ABCO for waiting time distributions without momenfgower lawst™ ¢ in asymptotics The respective curves describes
=3 stationary(solid line) and nonstationarydashed ling casesa=% stationary(dotted liné and nonstationarylong dash-dotted line
cases, anng nonstationary caséshort dash-dotted line The results of Monte Carlo simulations farzg stationary case are also

included.

butions, together with their nonstationary counterp@i®s  gous behavior in physically different context was found by
the =32 case, only the nonstationary result existare  Barkai and Fleuroy4].

shown in Fig. 2. Moreover, we also present there the results To conclude we have presented the calculations of the
of the Monte Carlo simulations for the= 3 stationary case. resonant activation phenomenon for non-Markovian switch-
One can see that the results are qualitatively the same as iing potentials generated by renewal processes with various
previous cases for both=7 cases(stat. and nonstatand  waiting time densities. We found that the results are qualita-
the =3 nonstationary case. On the other hand, the3 tively the same for all switching processes except for those
stationary case and the=3 case are qualitatively different which are generated by the waiting time densities with
since the resonant activation minimum in the MFPT curve idivergent first moment. For those processes the resonant
absent in these two cases. This shows that whenever a wa#etivation minimum in the MFPT curve is not present.
ing time density with divergent first moment is involvetie ~ The method used for the calculations may be easily extended
stationarya=3 case has(t) with divergent first moment for general potential profiles and different boundary condi-
the generic resonant activation behavior is spoiled. An analatons.
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