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Resonant activation phenomenon for non-Markovian potential-fluctuation processes
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We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching
generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results
by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian
processes having the first moment of the waiting time distributions, we get qualitatively the same results as in
the Markovian case. However, for distributions without the first moment, the mean first passage time curves do
not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the
resonant activation fails for fluctuating processes widely deviating from Markovian.
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The resonant activation phenomenon first reported by
ering and Gadoua@1# has attracted much attention. After th
famous seminal paper various models exhibiting this p
nomenon were considered and the conditions under w
the phenomenon is present were intensively studied@2#. We
consider a simple generalization of the original model
Doering and Gadoua to non-Markovian switching potenti
generated by arbitrary renewal processes. That is, we s
the solutions of the following stochastic differential equati

d

dt
X~ t !5FQ~ t !1j~ t !, ~1!

where j(t) is a Gaussian white noise process w
^j(t)j(t8)&52d(t2t8) and Q(t) is a symmetric dichoto-
mous noise jumping between61 according to a renewa
process generated by arbitrary waiting time densityf (t) with
the distribution functionF(t)5*0

t dt f (t). We study both the
stationary as well as nonstationary renewal processes
make the process stationary we have to replace the first w
ing time density byh(t)5(1/m1)@12F(t)# @the distribution
function H(t)#, with m15*0

`dtt f(t). In nonstationary case
we takeh(t)5 f (t). The diffusion described by the rando
processX(t) takes place on a linear segmentxP(0,1) with
the reflecting wall atx51 and absorbing wall atx50.

First, we present the theory of the calculation of t
switching-averaged Green’s functions. More precisely,
motion within the safe domainxP(0,1) will be described by
the state-of-potential resolved conditional densit
Gab(x,y;t), defined as

Gab~x,y;t !dx5Prob$X~ t !P~x,x1dx!

and Q~ t !5auX~0!5y and Q~0!5b%, ~2!
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with a, b56. The subscripts specify the final~a! and initial
~b! state of the fluctuating potential while the argumentsx,y
give the final (x) and initial (y) position of the diffusing
particle. Because of the absorbing boundary atx50 the total
probability in the safe domain is not conserved. Instead
gradually leaks out into the boundary. It is helpful to co
sider auxiliary quantities called boundary channels which
scribe the process of leaking of the probability out of the s
domain into the absorbing boundary. We may even dis
guish two boundary channels according to the state of
fluctuating potential at the moment of the absorption eve
In order to describe the dynamics of the channel filling p
cesses, we introduce the boundary channel occupa
Green’s functions. These quantities are given by

pab~y;t !5Prob$X~ t !PBauX~0!5y and Q~0!5b%, ~3!

where theB6 denote the corresponding boundary channe
Again, the second subscript~b! relates to the initial state o
the potential while the first~a! specifies the boundary chan
nel in question. It is convenient to write these Green’s fun
tions in the form of 2-by-2 matrices denoted by the boldfa
lettersG(x,y;t),P(y;t) in the next.

Assume for a moment that the potential is static, i.e., i
fixed in one of its two states. Then the above matrices wh
will play a role of unperturbed quantities are diagonal w
the form G(0)(x,y;t)5diag@G1

(0)(x,y;t),G2
(0)(x,y;t)#, P(0)(y;t)

5diag@p1
(0)(y;t),p2

(0)(y;t)#. The Green’s functionsG6
(0)(x,y;t)

are given simply by the Fokker-Planck equations for t
fixed potentials supplemented by the boundary conditio
The boundary channel occupation probabilitiesp6

(0)(y;t) are
given by the global probability conservation condition

p6
~0!~y;t !512E

0

1

dxG6
~0!~x,y;t !, ~4!

which may be put with the help of the appropriate Fokk
Planck equations in a local form reading
©2000 The American Physical Society02-1
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]

]t
p6

~0!~y;t !52S 2
]

]x
6F DG6

~0!~x,y;t !U
x50

5
]

]x
G6

~0!~x,y;t !U
x50

. ~5!

The last but one expression gives a clear physical insigh
the operator2]/]x6F is the probability current operato
for the corresponding slope of the potential. Namely, the r
of the channel filling process equals the probability curr
into the absorbing boundary.

After these preparatory steps, let us focus on the const
tion of the full Green’s functions for fluctuating potential
Basically, our procedure consists of three steps. First,
shall assume an arbitrary fixed sequence of the poten
switching events and we shall follow the particle diffusion
the corresponding time dependent potential. Secondly,
attribute to any such evolution the probability weight of
realization. It is during this step that the properties of t
underlying potential-switching process enter the calculati
Finally, we shall perform the averaging over the complete
of mutually exclusive evolutions. The averaged evolution
simply given by the sum over all possible evolutio
weighted by the corresponding probabilities. This is a br
outline of the method ofconstruction of trajectoriesintro-
duced by Chvosta and Reineker in Ref.@3#, where also the
full formalism can be found. The result of the procedure
our case is

G~ t !5@12H~ t !#G~0!~ t !1E
0

t

dt1@12F~ t2t1!#

3G~0!~ t2t1!•S•h~ t1!G~0!~ t1!1E
0

t

dt1E
0

t1
dt2

3@12F~ t2t1!#G~0!~ t2t1!•S• f ~ t12t2!

G~0!~ t12t2!•S•h~ t2!G~0!~ t2!1¯, ~6!

where the center dot denotes the matrix operator multipl
tion, i.e., the matrix multiplication and the integration ov
the internal spatial variables, and where the matrixS5(1

0
0
1)

represents the switching event. The full evolution is rep
sented as a sum of processes with zero, one, two, etc.
tential switching events.

In the case of evaluation of the boundary channel oc
pations, i.e., the boundary channel part of the Green’s fu
tion P(y;t), the above procedure of the construction of t
jectories yields the proper whole set of mutually exclus
paths for the evolution of (]/]t)P(y;t), not for P(y;t) as
one may see by a closer inspection. Repeating the avera
procedure~6! for (]/]t)P(y;t) and bearing in mind Eq.~5!
we derive this simple relation between the boundary chan
occupation and the safe domain parts of Green’s functio

]

]t
P~y;t !5

]

]x
G~x,y;t !U

x50

. ~7!
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This formula expresses the local conservation law of pr
ability for the composite diffusion and potential-fluctuatio
process.

The convolution structure of Green’s function~6! enables
to rewrite the above complicated time integrals structures
the Laplace transform into a simple geometrical series wh
may be formally summed up to the infinite order giving

G~z!5@~12H !G~0!#~z!1@~12F !G~0!#~z!•S•@hG~0!#~z!

1@~12F !G~0!#~z!•S•@ f G~0!#~z!•S•@hG~0!#~z!

1¯ ~8a!

5@~12H !G~0!#~z!1@~12F !G~0!#~z!

•~12S•@ f G~0!#~z!!21
•S•@hG~0!#~z!,

P~y;z!5
1

z

]

]x
G~x,y;z!U

x50

. ~8b!

Structures such as@ f G(0)#(z)5*0
`dte2ztf (t)G(0)(t) mean a

Laplace transform of the product. Equations~8! are our main
result for Green’s functions of the composite process. So
ing them we get the complete information about the abso
tion process, i.e., the full description of the time evolution
the probability captured in the individual boundary channe

In the following, we restrict ourselves mostly to a reduc
information concerning the boundary channel occupatio
Namely, we will consider the asymptotic boundary chan
occupation quantities defined as

Pab~y!5 lim
t→`

pab~y;t !5 lim
z→0

zpab~y;z!, ~ABCO!,

~9!

and also the first moments of the boundary channels occ
tion densities reading

tab~y!5E
0

`

dtt
dpab~y;t !

dt
5 lim

z→0

Pab~y!2zpab~y;z!

z
.

~10!

These quantities are simply related to the mean first pas
timest6(y) for respective initial conditionsQ(0)56 by

t6~y!5t16~y!1t26~y!, ~MFPT!. ~11!

For the Markovian case, the waiting time distributio
functions aref (t)5h(t)5me2mt,12F(t)512H(t)5e2mt

5 f (t)/m. For any functionG(t) the following identity
holds: @ f G#(z)5*0

`dte2ztf (t)G(t)5mG(z1m). We use
these properties in Eq.~8! to obtain

G~z!5S G1
0 ~z1m!21 2m

2m G2
0 ~z1m!21D 21

. ~12!

Thus, for Green’s function in the safe domainG(z), we sim-
ply get the matrix Fokker-Planck equation valid for the Ma
kovian switching process@see Eq.~4! in Ref. @1##.
2-2



BRIEF REPORTS PHYSICAL REVIEW E 63 012102
FIG. 1. ABCO and MFPT for waiting times distributions with fast decay fort→`, namely,G0 ~Markovian case! ~solid line!, G1 ~long
dashed line!, G5 ~short dashed line!, deterministic switching~dotted line!, and twod-functions distribution~dot-dashed line!. Thet6 denote
the mean first passage times for the respective slopes of the potential. The limiting values of MFPT in the static limit~the average of both
t’s! and in the infinitely fast switching limit~motion in the average potential! are also shown by the bars.
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We may proceed further to analytically evalua
pab(y;z) using Eq.~8b! from the knowledge of the Markov
ian Green’s function. With the help of identities bein
satisfied by G(z) we come to the final analytic resu
for the time evolution of the boundary occupationP(y;z)
reading

P~y;z!5
1

z
GR

21~0,0;z!•GR~0,y;z!, for yP~0,1!.

~13!

This expression uses the Markovian Green’s funct
GR(x,y;z) for the diffusion in ~2`, 1! with the reflecting
wall at x51 only.

Instead of quoting the full rather involved result fo
P(y;z), we only present the physically transparent expr
sion for ABCO with the Doering-Gadoua initial conditio
y51

Pab~1!5@2m coshk1F2#21Fm coshk1abm

1amFS 12
sinhk

k D1S a1b

2 D 2

F2G , ~14!

with k5A2m1F2. One can easily see that the probabil
conservation conditions for asymptotic timesP1b1P2b
51 are satisfied. We also verified that our expression~13!
leads to the famous result fort of Doering and Gadoua
(10a–c). Moreover, we give here the analytic expression
ABCO for the ‘‘minus’’ channel P2(1)5@P21(1)
1P22(1)#/2, a quantity analogous to that depicted in Fig
of Ref. @1# as a result of the Monte Carlo simulation~for that
calculation, DG used the potential switching betweenF1

58 andF250)

P2~1!5
2mk coshk12mF sinhk22mFk1kF2

2k~2m coshk1F2!
.

~15!

The curves ofP2(1),t(1) as functions ofm for F58 are
plotted in Fig. 1 for reference to be compared with oth
results generated by non-Markovian switching.
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Next, we present the numerical results for several n
Markovian switching processes generated by various rene
processes governed by waiting time probability densit
f (t) normalized~except for one which cannot be normalize!
so that the mean switching time equals 1/m, i.e., *0

`dtt f(t)
51/m. We evaluated the ABCO of the ‘‘minus’’ channe
P2(1)5@P21(1)1P22(1)#/2 and the MFPT t(1)
5@t1(1)1t2(1)#/251/2Sa,b56tab(1) for the symmetric
initial condition Prob$Q(0)56%5 1

2 and y51 considered
also in the Markovian case. To calculate these quantities
used a numerical solution of Eq.~8! employing the eigen-
modes expansion of the unperturbed Green’s functions.
of interest to mention that for some specific waiting tim
distributions likeGn distributions used below, it would be
possible to write down and solve in an analytic form t
equations for Green’s functions analogous to Eq.~12!.

In the first set of pictures, Fig. 1, we plot the results f
the ABCO and MFPT for the stationary processes genera
by waiting time distributions decaying fast fort→`. The
waiting time distributions used here cover theGn distribu-
tions f Gn

(t)5m@(n11)(n11)/n! #(mt)ne2(n11)mt with n50
~Markov case!, 1 and 5, the delta-function distributio
f d(t)5d(t21/m) corresponding to the deterministic switch
ing process, and a two-delta-function distributionf 2d(t)
5 1

2 d(t21/2m)1 1
2 d(t23/2m). One can see that the qualita

tive features of the Markovian case are preserved even
the considered non-Markovian switching potentials. Name
both the wide resonant activation maximum in the ABC
curve as well as the resonant activation minimum in
MFPT curve are present in all cases with the shape chan
attributable to the various variances of the used probab
densities~compareG1 , two-delta functions, andG5 cases!.
We also performed the numerical simulations which fu
confirmed our results.

Further, we performed the calculations for the waiti
time distributions decaying slowly similar to power laws f
larget, i.e., f a(t)}t2a for larget with a5 3

2 , 5
2 , 7

2 . The exact
expressions for these densities are f a(t)
5@m/A2p(mt)a#e21/2mt for a5 3

2 , 5
2 and f 7/2(t)

5(3)/A2pm5t7)e23/2mt. These densities do not hav
higher order moments fork>a21. The distributions chosen
above do not have moments starting from the first, the s
ond, and the third, respectively. The results for these di
2-3
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FIG. 2. ABCO for waiting time distributions without moments~power lawst2a in asymptotics!. The respective curves describesa
5

5
2 stationary~solid line! and nonstationary~dashed line! cases,a5

7
2 stationary~dotted line! and nonstationary~long dash-dotted line!

cases, anda5
3
2 nonstationary case~short dash-dotted line!. The results of Monte Carlo simulations fora5

5
2 stationary case are als

included.
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butions, together with their nonstationary counterparts~for
the a5 3

2 case, only the nonstationary result exists!, are
shown in Fig. 2. Moreover, we also present there the res
of the Monte Carlo simulations for thea5 5

2 stationary case
One can see that the results are qualitatively the same
previous cases for botha5 7

2 cases~stat. and nonstat.! and
the a5 5

2 nonstationary case. On the other hand, thea5 5
2

stationary case and thea5 3
2 case are qualitatively differen

since the resonant activation minimum in the MFPT curve
absent in these two cases. This shows that whenever a
ing time density with divergent first moment is involved@the
stationarya5 5

2 case hash(t) with divergent first moment#
the generic resonant activation behavior is spoiled. An an
s
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gous behavior in physically different context was found
Barkai and Fleurov@4#.

To conclude we have presented the calculations of
resonant activation phenomenon for non-Markovian swit
ing potentials generated by renewal processes with var
waiting time densities. We found that the results are qual
tively the same for all switching processes except for th
which are generated by the waiting time densities w
divergent first moment. For those processes the reso
activation minimum in the MFPT curve is not presen
The method used for the calculations may be easily exten
for general potential profiles and different boundary con
tions.
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